Lets take for instance our friend Jill who runs on the treadmill—day after day, year after year—like she's on a mission. Her body seems to get softer with every mile, and the softer she gets, the more she runs. For her, I feel sympathy, because the world has convinced her that running is the way to stay “slim and toned.”
There’s a Jill in every gym. Spotting them is easy. They’re the women who run for an hour or more every day on the treadmill, setting new distance and/or time goals every week and month. Maybe they’re just interested in their treadmill workouts, maybe they’re training for their fifth fund-raising marathon, or maybe they’re even competing against runners in Finland via some Nike device. Years of running like this has exposed the results, which I’m not going to sugarcoat:
She’s still fat. Actually, she’s gotten fatter.
I’ve tried to rescue her from the clutches of cardio in the past, but my efforts didn’t work until a month ago, when she called to tell me that a blood test had confirmed her doctor’s suspicion: She had hypothyroidism, meaning her body no longer made enough thyroid hormone.
Her metabolism had slowed to a snail’s pace, and the fat was accumulating. This was her body rebelling. When Jill asked for my advice, I told her to do two things: To schedule a second test for two weeks later, and to stop all running until then.
Running with Everything in You
I’m not here to pick on women or make fun of them. There are men out there who do the same thing, thinking cardio will wipe away the effects of their regular weekend beer binges. It’s more of a problem with women, though, and I’m targeting them for three very good reasons:
1. They’re often intensely recruited for fund-raisers like Team-In-Training, lured by the promises of slim, trim bodies and good health resulting from the months of cardio training leading to marathons—in addition to doing something for charity.
2. Some physique coaches prescribe 20-plus hours per week of pre-contest cardio for women, which essentially amounts to a part-time job.
3. Steady-state activities like this devastate the female metabolism. This happens with men, too, but in different ways.
One of the things that the fitness industry is doing wrong is over-prescribing cardio. I’m not talking about walking here, nor am I referring to appropriate HIIT cardio. This is about running, cycling, stair-climbing, or elliptical cardio done for hours at or above 65 percent of your max heart rate. The anaerobic threshold factors into this, but I’m painting gym cardio in very broad strokes here so everyone will understand what I mean.
Science Wants You to Stop Running
Studies—both clinical and observational—make a compelling case that too much cardio can impair the production of the thyroid hormone T3, its effectiveness and metabolism[1-11], particularly when accompanied by caloric restriction, an all too common practice. This is why many first or second-time figure and bikini competitors explode in weight when they return to their normal diets, and it’s why the Jills of the world can run for hours every week with negative results.
T3 is the body’s preeminent regulator of metabolism, by the way it throttles the efficiency of cells[12-19]. It also acts in various ways to increase heat production[20-21]. As I pointed out in previous articles, this is one reason why using static equations to perform calories-in, calories-out weight loss calculations doesn’t work.
When T3 levels are normal, the body burns enough energy to stay warm, and muscles function at moderate efficiency. When there’s too much thyroid hormone (hyperthyroidism), the body goes into a state where weight gain is almost impossible. Too little T3 (hypothyroidism), and the body accumulates body fat with ease, almost regardless of physical activity level. Women inadvertently put themselves into a hypothyroid condition when they perform so much steady-state cardio.
In the quest to lose body fat, T3 levels can offer both success and miserable failure because of the way it influences other fat-regulating hormones[22-31]. Women additionally get all the other negative effects of this, which I’ll cover below. Don’t be surprised here. This is a simple, sensible adaptation of a body that’s equipped to bear the full brunt of reproduction.
We Were Not Designed For This
Think about it this way: Your body is a responsive, adaptive machine that has evolved for survival. If you’re running on a regular basis, your body senses this excessive energy expenditure, and adjusts to compensate. Remember, no matter which way we hope the body works, its endgame is always survival. If you waste energy running, your body will react by slowing your metabolism to conserve energy. Decreasing energy output is biologically savvy for your body. Your body wants to survive longer while you do what it views as a stressful, useless activity. Decreasing T3 production increases efficiency and adjusts your metabolism to preserve energy immediately.
Nothing exemplifies this increasing efficiency better than the way the body starts burning fuel. Training consistently at 65 percent or more of your max heart rate adapts your body to save as much body fat as possible. After regular training, fat cells stop releasing fat the way they once did during moderate-intensity activities[32-33]. Energy from body fat stores also decreases by 30 percent[34-35]. To this end, your body sets into motion a series of reactions that make it difficult for muscle to burn fat at all[36-41]. Instead of burning body fat, your body takes extraordinary measures to retain it.
Still believe cardio is the fast track to fat loss?
That’s not all. You can still lose muscle mass. Too much steady-state cardio actually triggers the loss of muscle[42-45]. This seems to be a twofold mechanism, with heightened and sustained cortisol levels triggering muscle loss[46-56], which upregulates myostatin, a potent destroyer of muscle tissue[57]. Say goodbye to bone density, too, because it declines with that decreasing muscle mass and strength[58-64].
And long term health? Out the window, as well. Your percentage of muscle mass is an independent indicator of health[65]. You’ll lose muscle, lose bone, and lose health. Awesome, right?
When sewn together, these phenomena coordinate a symphony of fat gain for most female competitors after figure contests. After a month—or three—of 20-plus hours of cardio per week, fat burning hits astonishing lows, and fat cells await an onslaught of calories to store[66-72]. The worst thing imaginable in this state would be to eat whatever you wanted, whenever you wanted. The combination of elevated insulin and cortisol would make you fat, and it would also create new fat cells so you could become even fatter[73-80].
Seriously, Lets Cut Out the Long Distance Cardio
I won’t name names, but I’ve seen amazing displays of gluttony from some small, trim women. Entire pizzas disappear, leaving only the flotsam of toppings that fell during the feeding frenzy. Appetizers, meals, cocktails and desserts—4000 calories worth—vanish at the Cheesecake Factory. There are no leftovers, and there are no crumbs. Some women catch this in time and stop the devastation, but others quickly swell, realizing that this supposed off-season look has become their every-season look.
And guess what they do to fix it? Double sessions of cardio.
The right way to train |
This “cardio craze” is a form of insanity. There are better ways to lose fat, and there are better ways to look good. Your beach body is not at the end of a marathon, and you won’t find it on a treadmill. In fact, it’s quite the opposite if you’re using steady-state cardio to get there. The show may be over, and the finish line crossed, but the damage to your metabolism has just begun.
Don’t want to stop running? It's OK. Just keep in mind though that the fat won’t come off your hips, thighs, etc. following that approach. You’re keeping it there.
And as for Jill, my friend whose dilemma sparked this article? She took my suggestion and cut out the cardio. Two weeks later, her T3 count was normal ;).
DH Kiefer
After graduating magna cum laude in three years with degrees in mathematics and physics, then becoming a Ph.D. candidate in physics at the University of Florida in just one year, Kiefer knows the value of academic research. These credentials, however, aren’t some fitness industry gimmick designed to hook you in. Kiefer’s been researching, testing, and verifying what hard science proves as fact for over two decades. And as his clients and readers of The Carb Nite Solution and Carb Back-Loading will attest, his results are the absolute best in the business.
References
1. Baylor LS, Hackney AC. Resting thyroid and leptin hormone changes in women following intense, prolonged exercise training. Eur J Appl Physiol. 2003 Jan;88(4-5):480-4.
2. Boyden TW, Pamenter RW, Rotkis TC, Stanforth P, Wilmore JH. Thyroidal changes associated with endurance training in women. Med Sci Sports Exerc. 1984 Jun;16(3):243-6.
3. Wesche MF, Wiersinga WM. Relation between lean body mass and thyroid volume in competition rowers before and during intensive physical training. Horm Metab Res. 2001 Jul;33(7):423-7.
4. Tremblay A, Poehlman ET, Despres JP, Theriault G, Danforth E, Bouchard C. Endurance training with constant energy intake in identical twins: changes over time in energy expenditure and related hormones. Metabolism. 1997 May;46(5):499-503.
5. Rone JK, Dons RF, Reed HL. The effect of endurance training on serum triiodothyronine kinetics in man: physical conditioning marked by enhanced thyroid hormone metabolism. Clin Endocrinol (Oxf). 1992 Oct;37(4):325-30.
6. Loucks AB, Callister R. Induction and prevention of low-T3 syndrome in exercising women. Am J Physiol. 1993 May;264(5 Pt 2):R924-30.
7. Loucks AB, Heath EM. Induction of low-T3 syndrome in exercising women occurs at a threshold of energy availability. Am J Physiol. 1994 Mar;266(3 Pt 2):R817-23.
8. Rosolowska-Huszcz D. The effect of exercise training intensity on thyroid activity at rest. J Physiol Pharmacol. 1998 Sep;49(3):457-66.
9. Wirth A, Holm G, Lindstedt G, Lundberg PA, Bjorntorp P. Thyroid hormones and lipolysis in physically trained rats. Metabolism. 1981 Mar;30(3):237-41.
10. Opstad PK, Falch D, Oktedalen O, Fonnum F, Wergeland R. The thyroid function in young men during prolonged exercise and the effect of energy and sleep deprivation. Clin Endocrinol (Oxf). 1984 Jun;20(6):657-69.
11. Hohtari H, Pakarinen A, Kauppila A. Serum concentrations of thyrotropin, thyroxine, triiodothyronine and thyroxine binding globulin in female endurance runners and joggers. Acta Endocrinol (Copenh). 1987 Jan;114(1):41-6.
12. Lanni A, Moreno M, Lombardi A, Goglia F. Thyroid hormone and uncoupling proteins. FEBS Lett. 2003 May 22;543(1-3):5-10. Review.
13. Leijendekker WJ, van Hardeveld C, Elzinga G. Heat production during contraction in skeletal muscle of hypothyroid mice. Am J Physiol. 1987 Aug;253(2 Pt 1):E214-20.
14. Silva JE. Thyroid hormone control of thermogenesis and energy balance. Thyroid. 1995 Dec;5(6):481-92. Review.
15. Argyropoulos G, Harper ME. Uncoupling proteins and thermoregulation. J Appl Physiol. 2002 May;92(5):2187-98. Review.
16. Rolfe DF, Brown GC. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev. 1997 Jul;77(3):731-58. Review.
17. Danforth E Jr, Burger A. The role of thyroid hormones in the control of energy expenditure. Clin Endocrinol Metab. 1984 Nov;13(3):581-95. Review.
18. Schrauwen P, Hesselink M. UCP2 and UCP3 in muscle controlling body metabolism. J Exp Biol. 2002 Aug;205(Pt 15):2275-85. Review.
19. Silva JE. The multiple contributions of thyroid hormone to heat production. J Clin Invest. 2001 Jul;108(1):35-7.
20. Goglia F, Silvestri E, Lanni A. Thyroid hormones and mitochondria. Biosci Rep. 2002 Feb;22(1):17-32. Review.
21. Goglia F, Moreno M, Lanni A. Action of thyroid hormones at the cellular level: the mitochondrial target. FEBS Lett. 1999 Jun 11;452(3):115-20. Review.
22. Ribeiro MO, Carvalho SD, Schultz JJ, Chiellini G, Scanlan TS, Bianco AC, Brent GA. Thyroid hormone–sympathetic interaction and adaptive thermogenesis are thyroid hormone receptor isoform–specific. J Clin Invest. 2001 Jul;108(1):97-105.
23. Beylot M, Riou JP, Bienvenu F, Mornex R. Increased ketonaemia in hyperthyroidism. Evidence for a beta-adrenergic mechanism. Diabetologia. 1980;19(6):505-10.
24. Ostman J, Arner P, Bolinder J, Engfeldt P, Wennlund A. Regulation of lipolysis in hyperthyroidism. Int J Obes. 1981;5(6):665-70.
25. Collins S, Cao W, Daniel KW, Dixon TM, Medvedev AV, Onuma H, Surwit R. Adrenoceptors, uncoupling proteins, and energy expenditure. Exp Biol Med (Maywood). 2001 Dec;226(11):982-90.
26. Williams LT, Lefkowitz RJ, Watanabe AM, Hathaway DR, Besch HR Jr. Thyroid hormone regulation of beta-adrenergic receptor number. J Biol Chem. 1977 Apr 25;252(8):2787-9.
27. Martin WH 3rd. Triiodothyronine, beta-adrenergic receptors, agonist responses, and exercise capacity. Ann Thorac Surg. 1993 Jul;56(1 Suppl):S24-34.
28. Tsujimoto G, Hashimoto K, Hoffman BB. Effects of thyroid hormone on beta-adrenergic responsiveness of aging cardiovascular systems. Am J Physiol. 1987 Mar;252(3 Pt 2):H513-20.
29. Richelsen B, Sorensen NS. Alpha 2- and beta-adrenergic receptor binding and action in gluteal adipocytes from patients with hypothyroidism and hyperthyroidism. Metabolism. 1987 Nov;36(11):1031-9.
30. Wang JL, Chinookoswong N, Yin S, Shi ZQ. Calorigenic actions of leptin are additive to, but not dependent on, those of thyroid hormones. Am J Physiol Endocrinol Metab. 2000 Dec;279(6):E1278-85.
31. Seidel A, Heldmaier G. Thyroid hormones affect the physiological availability of nonshivering thermogenesis. Pflugers Arch. 1982 May;393(3):283-5.
32. Jones NL, Heigenhauser GJ, Kuksis A, Matsos CG, Sutton JR, Toews CJ. Fat metabolism in heavy exercise. Clin Sci (Lond). 1980 Dec;59(6):469-78.
33. Romijn JA, Coyle EF, Sidossis LS, Zhang XJ, Wolfe RR. Relationship between fatty acid delivery and fatty acid oxidation during strenuous exercise. J Appl Physiol. 1995 Dec;79(6):1939-45.
34. Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, Wolfe RR. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol Endocrinol Metab. 1993;265:E380-E391.
35. Martin WH 3rd, Dalsky GP, Hurley BF, Matthews DE, Bier DM, Hagberg JM, Rogers MA, King DS, Holloszy JO. Effect of endurance training on plasma free fatty acid turnover and oxidation during exercise. Am J Physiol. 1993;265:E708–14.
36. Elayan IM, Winder WW. Effect of glucose infusion on muscle malonyl-CoA during exercise. J Appl Physiol. 1991 Apr;70(4):1495-9.
37. Saddik M, Gamble J, Witters LA, Lopaschuk GD. Acetyl-CoA carboxylase regulation of fatty acid oxidation in the heart. J Biol Chem. 1993 Dec 5;268(34):25836-45.
38. McGarry JD, Mannaerts GP, Foster DW. A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. J Clin Invest. 1977 Jul;60(1):265-70.
39. Robinson IN, Zammit VA. Sensitivity of carnitine acyltransferase I to malonly-CoA inhibition in isolated rat liver mitochondria is quantitatively related to hepatic malonyl-CoA concentration in vivo. Biochem J. 1982 Jul 15;206(1):177-9.
40. McGarry JD, Mills SE, Long CS, Foster DW. Observations on the affinity for carnitine, and malonyl-CoA sensitivity, of carnitine palmitoyltransferase I in animal and human tissues. Demonstration of the presence of malonyl-CoA in non-hepatic tissues of the rat. Biochem J. 1983 Jul 15;214(1):21-8.
41. Sidossis LS, Gastaldelli A, Klein S, Wolfe RR. Regulation of plasma fatty acid oxidation during low- and high-intensity exercise. Am J Physiol. 1997;272:E1065–70.
42. Mertens DJ, Rhind S, Berkhoff F, Dugmore D, Shek PN, Shephard RJ. Nutritional, immunologic and psychological responses to a 7250 km run. J Sports Med Phys Fitness. 1996 Jun;36(2):132-8.
43. Wesche MF, Wiersinga WM. Relation between lean body mass and thyroid volume in competition rowers before and during intensive physical training. Horm Metab Res. 2001 Jul;33(7):423-7.
44. Eliakim A, Brasel JA, Mohan S, Barstow TJ, Berman N, Cooper DM. Physical fitness, endurance training, and the growth hormone-insulin-like growth factor I system in adolescent females. J Clin Endocrinol Metab. 1996 Nov;81(11):3986-92.
45. Bisschop PH, Sauerwein HP, Endert E, Romijn JA. Isocaloric carbohydrate deprivation induces protein catabolism despite a low T3-syndrome in healthy men. Clin Endocrinol (Oxf). 2001 Jan;54(1):75-80.
46. Essig DA, Alderson NL, Ferguson MA, Bartoli WP, Durstine JL. Delayed effects of exercise on the plasma leptin concentration. Metabolism. 2000 Mar;49(3):395-9.
47. Kanaley JA, Weltman JY, Pieper KS, Weltman A, Hartman ML. Cortisol and growth hormone responses to exercise at different times of day. J Clin Endocrinol Metab. 2001 Jun;86(6):2881-9.
48. Duclos M, Gouarne C, Bonnemaison D. Acute and chronic effects of exercise on tissue sensitivity to glucocorticoids. J Appl Physiol. 2003 Mar;94(3):869-75.
49. Duclos M, Corcuff JB, Pehourcq F, Tabarin A. Decreased pituitary sensitivity to glucocorticoids in endurance-trained men. Eur J Endocrinol. 2001 Apr;144(4):363-8.
50. Heitkamp HC, Schulz H, Rocker K, Dickhuth HH. Endurance training in females: changes in beta-endorphin and ACTH. Int J Sports Med. 1998 May;19(4):260-4.
51. Duclos M, Corcuff JB, Arsac L, Moreau-Gaudry F, Rashedi M, Roger P, Tabarin A, Manier G. Corticotroph axis sensitivity after exercise in endurance-trained athletes. Clin Endocrinol (Oxf). 1998 Apr;48(4):493-501.
52. Tyndall GL, Kobe RW, Houmard JA. Cortisol, testosterone, and insulin action during intense swimming training in humans. Eur J Appl Physiol Occup Physiol. 1996;73(1-2):61-5.
53. Vasankari TJ, Kujala UM, Heinonen OJ, Huhtaniemi IT. Effects of endurance training on hormonal responses to prolonged physical exercise in males. Acta Endocrinol (Copenh). 1993 Aug;129(2):109-13.
54. Hoogeveen AR, Zonderland ML. Relationships between testosterone, cortisol and performance in professional cyclists. Int J Sports Med. 1996 Aug;17(6):423-8.
55. Seidman DS, Dolev E, Deuster PA, Burstein R, Arnon R, Epstein Y. Androgenic response to long-term physical training in male subjects. Int J Sports Med. 1990 Dec;11(6):421-4.
56. Duclos, M, Corcuff JB, Rashedi M, Fougere V, and Manier G. Trained versus untrained: different hypothalamo-pituitary adrenal axis responses to exercise recovery. Eur J Appl Physiol 75: 343-350, 1997.
57. Ma K, Mallidis C, Bhasin S, Mahabadi V, Artaza J, Gonzalez-Cadavid N, Arias J, Salehian B. Glucocorticoid-induced skeletal muscle atrophy is associated with upregulation of myostatin gene expression. Am J Physiol Endocrinol Metab. 2003 Aug;285(2):E363-71.
58. Cvijetić S, Grazio S, Gomzi M, Krapac L, Nemcić T, Uremović M, Bobić J. Muscle strength and bone density in patients with different rheumatic conditions: cross-sectional study. Croat Med J. 2011 Apr 15;52(2):164-70.
59. Dixon WG, Lunt M, Pye SR, Reeve J, Felsenberg D, Silman AJ, O’Neill TW; European Prospective Osteoporosis Study Group. Low grip strength is associated with bone mineral density and vertebral fracture in women. Rheumatology (Oxford). 2005 May;44(5):642-6.
60. Lekamwasam S, Weerarathna T, Rodrigo M, Arachchi WK, Munidasa D. Association between bone mineral density, lean mass, and fat mass among healthy middle-aged premenopausal women: a cross-sectional study in southern Sri Lanka. J Bone Miner Metab. 2009;27(1):83-8.
61. Li S, Wagner R, Holm K, Lehotsky J, Zinaman MJ. Relationship between soft tissue body composition and bone mass in perimenopausal women. Maturitas. 2004 Feb 20;47(2):99-105.
62. Salamone LM, Glynn N, Black D, Epstein RS, Palermo L, Meilahn E, Kuller LH, Cauley JA. Body composition and bone mineral density in premenopausal and early perimenopausal women. J Bone Miner Res. 1995 Nov;10(11):1762-8.
63. Winters KM, Snow CM. Body composition predicts bone mineral density and balance in premenopausal women. J Womens Health Gend Based Med. 2000 Oct;9(8):865-72.
64. Witzke KA, Snow CM. Lean body mass and leg power best predict bone mineral density in adolescent girls. Med Sci Sports Exerc. 1999 Nov;31(11):1558-63.
65. Allison DB, Zannolli R, Faith MS, Heo M, Pietrobelli A, VanItallie TB, Pi-Sunyer FX, Heymsfield SB. Weight loss increases and fat loss decreases all-cause mortality rate: results from two independent cohort studies. Int J Obes Relat Metab Disord. 1999 Jun;23(6):603-11.
66. Savard R, Despres JP, Marcotte M, Bouchard C. Endurance training and glucose conversion into triglycerides in human fat cells. J Appl Physiol. 1985 Jan;58(1):230-5.
67. Viru A, Toode K, Eller A. Adipocyte responses to adrenaline and insulin in active and former sportsmen. Eur J Appl Physiol Occup Physiol. 1992;64(4):345-9.
68. Hickner RC, Racette SB, Binder EF, Fisher JS, Kohrt WM. Effects of 10 days of endurance exercise training on the suppression of whole body and regional lipolysis by insulin. J Clin Endocrinol Metab. 2000 Apr;85(4):1498-504.
69. Gommers A, Dehez-Delhaye M, Caucheteux D. Prolonged effects of training on adipose tissue glucose metabolism and insulin responsiveness in adult rats (author’s transl) Diabete Metab. 1981 Jun;7(2):121-6.
70. Perreault L, Lavely JM, Kittelson JM, Horton TJ. Gender differences in lipoprotein lipase activity after acute exercise. Obes Res. 2004 Feb;12(2):241-9.
71. Taskinen MR, Nikkila EA. Effect of acute vigorous exercise on lipoprotein lipase activity of adipose tissue and skeletal muscle in physically active men. Artery. 1980;6(6):471-83.
72. Farese RV Jr, Yost TJ, Eckel RH. Tissue-specific regulation of lipoprotein lipase activity by insulin/glucose in normal-weight humans. Metabolism. 1991 Feb;40(2):214-6.
73. Gregoire F, Genart C, Hauser N, Remacle C. Glucocorticoids induce a drastic inhibition of proliferation and stimulate differentiation of adult rat fat cell precursors. Exp Cell Res. 1991 Oct;196(2):270-8.
74. Xu XF, Bjorntorp P. Effects of dexamethasone on multiplication and differentiation of rat adipose precursor cells. Exp Cell Res. 1990 Aug;189(2):247-52.
75. Hentges EJ, Hausman GJ. Primary cultures of stromal-vascular cells from pig adipose tissue: the influence of glucocorticoids and insulin as inducers of adipocyte differentiation. Domest Anim Endocrinol. 1989 Jul;6(3):275-85.
76. Hauner H, Entenmann G, Wabitsch M, Gaillard D, Ailhaud G, Negrel R, Pfeiffer EF. Promoting effect of glucocorticoids on the differentiation of human adipocyte precursor cells cultured in a chemically defined medium. J Clin Invest. 1989 Nov;84(5):1663-70.
77. Hauner H, Schmid P, Pfeiffer EF. Glucocorticoids and insulin promote the differentiation of human adipocyte precursor cells into fat cells. J Clin Endocrinol Metab. 1987 Apr;64(4):832-5.
78. Ramsay TG, White ME, Wolverton CK. Glucocorticoids and the differentiation of porcine preadipocytes. J Anim Sci. 1989 Sep;67(9):2222-9.
79. Bujalska IJ, Kumar S, Hewison M, Stewart PM. Differentiation of adipose stromal cells: the roles of glucocorticoids and 11beta-hydroxysteroid dehydrogenase. Endocrinology. 1999 Jul;140(7):3188-96.
80. Nougues J, Reyne Y, Barenton B, Chery T, Garandel V, Soriano J. Differentiation of adipocyte precursors in a serum-free medium is influenced by glucocorticoids and endogenously produced insulin-like growth factor-I. Int J Obes Relat Metab Disord. 1993 Mar;17(3):159-67.
Tweet This